Double folding optical parameters for 240 MeV ⁶Li beam -revisited

Y. Xu, J. Button, Y.-W. Lui, and D. H. Youngblood

I. Nuclear density distribution

We collect 4 kinds of 6Li nuclear density distributions for constructing the nuclear double folding potentials between ⁶Li projectile and seven target nuclei (²⁴Mg, ²⁸Si, ⁴⁰Ca, ⁴⁸Ca, ⁵⁸Ni, ⁹⁰Zr, and ¹¹⁶Sn). These nuclear density distributions are the theoretical results from *ab initio* [1], COSMA [2], and HFB [3], as well as the experimental results by electron scattering [4]. Fig. 1 shows the comparison of these 4 kinds of nuclear density distributions for ⁶Li. We finally choose the adopted experimental results [4] as the ⁶Li projectile density distributions for the construction of nuclear double folding potential.

On the other hand, we employ the calculated results by HFB theory [3] as the density distributions of the 7 target nuclei for the construction of nuclear double folding potential.

FIG. 1. Comparison of the different nuclear density distributions for ⁶Li.

II. Nuclear DDM3Y double folding potential

By folding the nuclear densities (both projectile and target) and nucleon-nucleon interaction, we obtained the DDM3Y double folding potentials between ⁶Li and these 7 target nuclei. The detail folding

method could be found in Refs. [5, 6]. Fig. 2 shows such DDM3Y double folding potential between ⁶Li and ¹¹⁶Sn as the example, where the 4 kinds of ⁶Li density distributions are all presented.

We finally choose the DDM3Y double folding potential, deduced by ⁶Li experimental density distribution, as the real part of nuclear potential in the further fitting of elastic data.

FIG. 2. DDM3Y double folding potential between 6Li and 116Sn. The 4 kinds of 6Li density distributions are all presented.

III. Elastic scattering fitting

By using the ECIS06 code, we fit the experimental data (angular distributions) of ⁶Li elastic scattering on these 7 target nuclei at $E_{c.m.}$ =240MeV. During the fitting, the DDM3Y double folding potential (as described in Part II) is adopted as the real part, while the Wood-Saxon potential is adopted as the imaginary part. Such choice is similar to those in Refs [5, 6]. To obtain the best fitting, a normalized factor and a scaling factor are introduced for the DDM3Y double folding potential. For the elastic scattering between 6Li and these 7 target nuclei, Fig. 3 shows the fitting results and Table I lists the corresponding potential parameters and χ^2 for Fig. 1.

 $E_{c.m.}$ =240MeV.

						1		1		, v ,	0
	z	Ν	А	Nuclei	Normali zed	Scaling factors	۷	r	а	X^2	previous X^2
					DDM3Y real part		Wood-Saxon imaginary part				for comparison
	12	12	24	24Mg	0.852	1.0587	50.28739	4.00815	1.07187	1.101	1.039
	14	14	28	28Si	0.8598	1.0512	42.69501	4.4028	1.04332	1.343	1.461
1	20	20	40	40Ca	0.8672	1.0717	44.45008	4.86415	1.09883	1.637	1.7
	20	28	48	48Ca	0.8823	1.0653	32.99495	5.74968	0.90051	1.134	1.2
	28	30	58	58Ni	0.8496	1.0608	39.60765	5.67734	1.08959	1.222	0.9
	40	50	90	90Zr	0.8566	1.0561	35.07076	6.87215	0.98615	0.905	1.1
	50	66	116	116Sr	0.8502	1.0658	59.11377	6.68749	1.04347	1.396	1.19

Table I. The parameters for DDM3Y potential and Wood-Saxon potential and χ^2 for Fig. 1.

Furthermore, we also fit the obtained 7 sets of normalized factors and the scaling factors against the nuclear mass number, which are shown in Fig. 4. It is expected to predict these (normalized and scaling factors) parameters for ⁶Li elastic scattering on other target nuclei.

FIG. 4. The fitting results of obtained normalized factors and the scaling factors against the nuclear mass number for the 7 sets of elastic scattering.

IV. Inelastic scattering calculation

According to the nuclear potential (DDM3Y real part and Wood-Saxon imaginary part) obtained by elastic scattering fitting, we calculate the angular distributions of the differential cross sections for 6Li inelastic scattering to the low-lying excited states of these 7 target nuclei. Here, the results for ²⁴Mg (2⁺ state at E*=1.369MeV), ²⁸Si (2⁺ state at E*=1.779MeV and 3⁻ state at E*=6.888MeV) and ¹¹⁶Sn (2⁺ state at E*=1.29MeV and 3⁻ state at E*=2.27MeV) are shown in Fig. 5.

FIG. 5. The angular distributions of 6 Li inelastic scattering to the low-lying excited states of 24 Mg, 28 Si and 116 Sn

During the calculations, the transfer potentials to low-lying excited states [5, 7] are taken into account, thus the reduced transition possibilities, namely the B(E2) and B(E3) values, are deduced. The procedure of extracting the B(EL) value is described in Refs. [5,7,8]. Here, we obtained that B(E2) =0.0451 for 2^+ state of 24 Mg (E*=1.369MeV), B(E2) =0.0317 for 2^+ state of 28 Si (E*=1.779MeV), B(E3)=0.00305 for 3^- state of 28 Si (E*=6.888MeV), B(E2) =2.30 for 2^+ state of 116 Sn (E*=1.29MeV), and B(E3)=1.28 for 3^- state of 116 Sn (E*=2.27MeV). The results for other 4 nuclei are still on studying.

- [1] C. Cockrell et al., Phys. Rev. C 86, 034325 (2012).
- [2] A.A. Korsheninnikov et al., Nucl. Phys. A617, 45 (1997).
- [3] Y. Xu et al., Astron. Astrophys. 549, A106 (2013), and S. Goriely, private communication
- [4] A.V. Dobrovolsky et al., Nucl. Phys. A766, 1 (2006).
- [5] X. Chen et al., Phys. Rev. C 76, 054606 (2007).
- [6] X. Chen et al., Phys. Rev. C 80, 014312 (2009).
- [7] X. Chen et al., Phys. Rev. C 79, 024320 (2009).
- [8] H.L. Clark et al., Phys. Rev. C 57, 2887 (1998).